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(’D’ Modelling the Regional and Global Earth System

MERGE
« Strategic research area (SRA) =

» Result of a Swedish government-initiated call for proposals in 2008.

» Universities invited to compete for a share of 1.8 billion SEK to
establish SRAs on 24 topics for a 5-year trial period (2010-14)

> increase in central university funding in exchange for a commitment
by the university to pursue and develop research in a particular area of
strategic (applied) importance for Sweden

» network of researchers at one or a number of universities, research
institutes, faculties, departments and research groups linked by
collaboration or common focus on one or a number of related topics
or themes

 Modelling the Regional and Global Earth System (MERGE) was one of two
successful proposals on the topic "Climate models”

« The SRAs will be evaluated in 2019/20 with a view to being made permanent
from 2020




MERGE Aims www.merge.lu.se

» To advance the state-of-the-art for
representing biosphere-atmosphere
forcing and feedbacks in global and
regional Earth system (climate)
models

» To contribute to national and
international efforts to describe and
attribute climate change,
underpinning policy responses

* To educate a new generation of
young ESM model experts

» To support the ClimBEco graduate
school - www.climbeco.lu.se

» To improve the societal relevance of
climate models and their results (q)

MERGE



Addressing the Research Challenges
The Four Linked Research Themes

LPJ-GUESS DGVM

—

Theme 2 - |learning

Theme 1 - ESM
development

climate-biosphere
interactions

RCA-GUESS RCM
EC-Earth ESM
WRF RCM

™

from the past

palaeoclimate & land
cover

LPJ-GUESS

Vegetation and land-use
reconstruction using REVEALS wm

Solar activity reconstructions

COSMO-wiso

Theme 4 - statistics

new methods for ESM
analysis and simulation
Landscape reconstruction using
Gaussian Markov Random Fields

Inverse modelling of CO,

Theme 3 - particles

aerosol-cloud
parameterisations for
ESMs

LPJ-GUESS

Laboratory and field studies
EC-Earth (BVOC & SOA, TM5)
EMEP




Energy budget of the Earth

Global average point fluxes (Wm-2)
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Tundra ecosystems are changing

2 Canopy ¢ Maximum NDVI (MaxNDVI)
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Vegetation cover and productivity have increased
In concert with recent decades’ climate warming and
CO, increases

Trend attribution from models:

» CO, fertilization (increased NPP)
 Climate change

« Nitrogen deposition |
Land cover change
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LPJ-GUESS - global DGVM & ecosystem model*
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*Smith et al. 2001, 2014
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Modelled tree density (ha™)

Modelled NPP (kgC m~2yr™)
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Forest stand structure, productivity, N cycling*
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Managed land version accounts for land use*

= Wheat
12 @I . = Maize

Modelled yield (tha™"y™)
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*Lindeskog et al. 2013. Earth System Dynamics 4: 385-407
Olin et al. 2015. Biogeosciences 12: 2489-2515



Residual land C sink (PgC yr1)
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Terrestrial carbon cycling*
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Landscape studies with LPJ-GUESS

L)

Sources: Yang et al. (2012), Christensen et al. (2007), Heliasz et al. (2011), Van Bogaert et al. (2011)



Comprehensive Stordalen Catchment C Budget, 1913-2100
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Vegetation dynamics resulting from climate change

Dominant PFTs Dominant PFTs 50m climate
(a) 19681-1990 (b) 2051-2080
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Greater biomass

Source: Tang, Miller et al. Biogeosciences (2015)



But! Offline studies miss feedbacks to climate via
changed land-atmosphere energy balance

o

Albedo (reflected
sunlight) differs between
forest and open land,
especially during period of
snow lie

outgoing

Greater evaporative
surface area of

tall, dense vegetation
enhances latent heat flux,
reducing surface warming




RCA-GUESS: aregional Earth system model*

open loop for
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Vegetation

*Smith et al. 2011
Tellus 63A: 87-106 daily

+ Multiple published studies for CORDEX Europe, Africa, Arctic, S. America




CORDEX-Arctic domain vegetation present and future*
coupled simulation (veg biophysical feedbacks included)
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in revision.
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RCA-GUESS evaluation*

Evaluation of Albedo (Globalbedo) and Latent Heat Flux
(upscaled FLUXNET) by Vegetation Type
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Feedbacks to surface air temperature*

Additional temperature change due to vegetation feedback
(2071-2100)—(1961-1990)

Spring Summer Autumn
(SON)
=Y,

RCP
forcing

EC-EARTH

LPJ-GUESS

*W. Zhang et al.
In revision.



Feedbacks to precipitation*

Additional precipitation change due to vegetation feedback
(2071-2100)—(1961-1990)

Spring Summer Autumn

RCP26

RCP
forcing

EC-EARTH

LPJ-GUESS

*W. Zhang et al.
in revision



Arctic vegetation feedbacks show the potential for
dynamic vegetation change to alter regional climate

Additional temperature change
(2071-2100)—(1961-1990)

albedo feedback — RCP 2.6

RCP 2
forcing

max
+lo
mean among yrs
-lo
min

evapotranspiration
feedback

J FMAMJI I ASOND

» Seasonality shift — longer growing season, earlier temperature peak
» Evaporative cooling evens out growing season temperature profile
— favours further shrub encroachment and treeline advance
_ _ *W. Zhang et al.
— Enhances the terrestrial C sink (Zhang et al. 2014) in revision.



CMIP6 - Scientific Context and Research Questions

WCRP Grand Challenges

* Clouds, Circulation and Climate Sensitivity WCRP W
* Changes in Cryosphere World Cinate TESRRTeh F;m._;;me
» Climate Extremes

* Regional Climate Information

* Regional Sea-level Rise

» Water Availability

and

» Biogeochemical forcings and feedbacks

CMIP6 experimental design will address:

1. How does the Earth System respond to forcing?
2. What are the origins and consequences of systematic model biases?

3. How can we assess future climate changes given climate variability,
predictability and uncertainties in scenarios?



CMIP6 DECK & Model IntercomParisons (MIPs)
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CMIP6 Historical Simulation will serve as a benchmark for CMIP6-endorsed MIPs



Annual ocean flux (PgCyr-')

Terrestrial carbon cycle fluxes differ widely in 11
carbon-climate CMIP5 ESMs (RCP 8.5 CO, emissions)
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Land Use Change ("' C) emissions were treated differently in the models
Some AR5 models had dynamic vegetation

Some AR5 models had nutrient (N) limitations on plant growth

No AR5 model included dynamic vegetation AND C-N interactions




There is a large spread in the modelled terrestrial ecosystem C pools
in IPCC-AR5 carbon-climate ESMs

vegetation C (PgC)
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- The large spread in ESM soil Cis due to differences in NPP and parameterisation of
heterotrophic respiration response to soil water and temperature
-  CMIP5 ESMs generlally overestimate CO2 fertilization



(IPeARTH; C-enabled ESM in CMIP6
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Dynamic Vegetation in EC-Earth, 1870-2010

High Vegetation Fraction - Difference 2010-1870
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Evaluation — terrestrial C pools and fluxes 0, C pools VegC

LPJ-GUESS — IFS 500]
Fully coupled simulation 1870-2015
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CMIP6 and EC-Earth

Final tuning ongoing

DECK experiments due to begin this month

Systematic and comprehensive ESM evaluation. E.g. using ESMValTool
with CMIP6 models

Even EC-Earth runs without LPJ-GUESS coupled will use LPJ-GUESS
vegetation fields, ensuring consistency across GCM and ESM
experiments

- Multiple model configurations and MIP commitments make this a
huge technical and scientific challenge!

: : : : RCP
- Dynamical downscaling will use a consistent ESM framework forcing

EC-EARTH ESM

LPJ-GUESS




Outlook and further model improvements

Field studies, observations and modelling highlight the importance of
including detailed biosphere-atmosphere interactions in coupled
modelling frameworks

But a modeller’s work is never done! We need to include
Permafrost-Cinteractions and wetland CH, emissions
Phosphorous limitation in addition to N important in the tropics
Improved wildfire parameterizations with BLAZE

New ecosystem disturbances such as insect attacks

Plant functional types (PFTs) must be added that can better quantify
the potential for bioenergy carbon capture and storage (BECCS) to
mitigate climate change

Etc.

LPJ-GUESS developments will be available to RCA-GUESS and EC-Earth,
providing better projections and for the Baltic Sea region
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Thank you!
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